DSN Progress Report 42-52

May and June 1979

A Fast Technique for Computing Syndromes of BCH and
RS Codes

. S. Reed

Department of Electrical Engineering
University of Southern California

T. K. Truong, R. L. Miller

Communication Systems Research Section

In this article, a combination of the Chinese Remainder Theorem and Winograd’s
algorithm is used to compute transforms of odd length over GF{2™). Such transforms are
used to compute the syndromes needed for decoding BCH and RS codes. The present
scheme requires substantially fewer multiplications and additions than the conventional

method of computing the syndromes directly.

l. Introduction

It is shown in Ref. I that the finite field transform can be
used to compute the syndromes for BCH and RS codes. The
disadvantage of the transform method over GF(2™) is that the
transform length is an odd number, so that the most efficient
FFT algorithm cannot be used. In this article a combination of
the Chinese Remainder Theorem and Winograd’s algorithm is
used to develop a fast finite field transform over GF(2™).
Such a fast transform can be used to compute the syndromes
needed when decoding BCH and RS codes (Ref. 2). It is also
shown by example that the number of multiplications and
additions of this new scheme for computing the syndromes is
substantially fewer than used in the direct method.

II. The Computation of the Syndromes for
BCH and RS Codes

Let n be the block length of a BCH or RS code of designed
distance d in GF(2™). Also denote the received vector by r=
(rg. 75 oo by_) If o 1 <j<d- 1 are roots of the code’s

generator polynominal, then the decoder needs to evaluate the
syndromes Sj for 1 <j<d- 1 from the received vector by

=
|
—

r.o for 1 <j<d-1 (1)

e
I
™

Il
(=]

Evidently, a direct computation of Sj for 1 <;7<d- 1
involves {(d ~ 1)}n - 1) multiplications and (d - 1)}(n - 1)
additions. Using the Chinese Remainder Theorem, it is shown
in this section that this number of multiplications and
additions can be reduced substantially. To see this, it n=n,
n, ...n,, where (nl-,n]-)=1 for i #7j, then by the Chinese
Remainder Theorem it follows (Refs. 3, 4) that the n-point
transform over GF(2™) defined in (1) can be decomposed
into a multidimensional transform over GF(2) as follows:

Given an integer j, define fi7) = (j,,/,, . . .
mod n, (1<k<r). Then o = o(0:0:---
where 1 is in the k' position, is a primitive n, ™" root of

’jr)’ Wherejk :j
, 0,1,0,...,0)

>

67

unity. The computation of S; given by (1) can now be written
as

S Gydge - i)
nl—l n2—1 nr—l
- Z Z $i iy, i)
11—0 12—0 lr—O
(2)

ij i ij

o Vg 22 Ar
1 2 4

for 1 <j<d- 1

From Eq. (2) this algorithm consists of the following r stages:

Stage 1:
nr-1
[
st = . g
(11,12,...,]r) Z:;) a(ll,tz,...,lr) @,
ll’
for0<j, <n, -1
Stage 2:
nr—l_l i i
2 = 1 r=1r—1
S(il,i2 ool ‘E_ S(il,i2 ,,,,, 7y %1
r—1
for0<j,_, <n_ -1
Stage r:
nl—l
i
- o - r—1 11
S =S, gy T 22 Say i@
i,=0
1
for1 <j<d-1 3)

68

Assume the number of multiplications and additions needed to
perform the n;-point transform for 1 <i<r - lism;anda,,
respectively. Then by Eq. (3) it is evident that the number of
multiplications and additions needed to compute Stage 1 up to
Stage (r - 1) is given by

r-1 m. r-1 ¢q.
¥ 13 .
M=n E Tand A=n E P respectively.
i=1 i i=1 i

To compute the syndromes one needs only to compute the
first d points of the transform over GF(2™) defined in Eq. (1).
Thus, at the Stage r in Eq. (3), one needs only to compute S =
SG1ar- ... i for 1<j<d-1. Hence the number of both
multiplications and additions needed to compute Stage r in (3)
is (d - 1)(n, - 1). Combining this with the above results the
total number of multiplications and additions needed to
compute (1) is finally M + (d - 1)(n, -~ I)and A + (d - 1)
(n; - 1). respectively.

Suppose that the transform length given in Eq. (3) of the
first # - 1 stages is small. Then it was shown (Ref. 1) that such
short length transforms can often be computed by a modifica-
tion of Winograd’s algorithm. Algorithms for computing a
transform over GF(2™) of n points for n=3,5,7,9.17 are given
in detail in Ref. (1). The detailed algorithms for computing the
n-point transform over GF(2™) for n= 3,5 are given in the
appendix. These transforms are used in the following example
to compute a transform of 28~1 points.

Example 1: let n =255 be the block length of an RS code
of designed distance d =33. This code will correct ¢ errors
where 2t <<33. The first step of the decoding process is to
compute the 32 syndromes as follows:

255-1
S, = D rdl for1<j<d-1 =32 (4)
i=0

where a is an element of order 255 in GF(28). If Eq. (4) is
computed directly, the number of multiplications and addi-
tions needed is 32(255- 1) = 8128 and 32(255 - 1) = 8128,
respectively. Since n =255 =nn,ny =17+ 5+ 3, (4) for this
case reduces to

Stage 1:
3-1 i
! = 33 ;
N LN a f <j,s2
S(11,12,13) i2=0 4 ipi ®3 or0s/y <
3

Stage 2:
- iy
2 - 1 .
St gy = Z Sty iy % for0<i, <4
=
Stage 3:
17-1 i
= ¢3 - 2 111 <i<
S = SG iiy) ZO St g, for1<j<32
=

%)

In Eq. (5) Stage 1 is a 3-point transform and Stage 2 is a
5-point transform. These two transforms are computed by a

modification of Winograd’s algorithm. It is shown in the
appendix that the number of multiplications and additions
needed to compute the 3-point transform is 1 and 5,
respectively. Thus, the number of multiplications and addi-
tions needed to compute Stage 1 is (17)}5)(1) =85, and
(17)5)(5) = 425, respectively. Again by the appendix one
observes that the number of multiplications and additions
needed to compute a S5-point transform is S and 17,
respectively. Thus, the number of multiplications and addi-
tions needed to compute Stage 2 is (17)(3)(5) =255 and
(17X(3)(17) = 867, respectively. Since one needs to compute S;
only for j=1,2,...,32, the number of multiplications and
additions needed to compute Stage 3 is 32(17-1)=512 and
32(17- 1) =512, respectively. Thus the total number of
multiplications and additions needed to compute the syn-
dromes S]- for 1<7j<32 is 85+255+512= 852, and
425+ 867 + 512 = 1804, respectively.

69

Appendix

A Summary of Transform Algorithm of n-Points forn = 3, 5

For n=3, let v be a primitive cube root of unity in
GF(2™), where 3[(2" - 1). The 3-point transform over

GF(2™)is

Algorithm forn = 3:

= = + = . .
5 a1+a2,32 s, ta,,m 1 553

A =m_,A =s, A =5 (A-1)

Hence, from Eq. (A-1), the total number of multiplications
and additions needed to perform a 3-point transform is 1 and
5, respectively.

Next consider the case n = 5. Let be a primitive 5" root
of unity in GF(2™), where 5[(2” - 1). The 5-point transform
is

5-1
A, = E aiyik for0<k<4
i=0

Algorithm forn =35:

s, —(a2+a3),s2—a1 ta,, sy=a; tay;

s =s1+s2,s =g +a0;

my=1ese,m =00 +y%) s,my = +9%) s

= ¢l 3y . - 4y, = 4y, -
my=(y +y7) s,,my=(y vyt csyme = (r+0Y) - s,

A, =s A, =s A =5 _. (A-2)

Hence, from Eq. (A-2), the total number of multiplications
and additions needed to perform a 7-point transform is 5 and
17, respectively.

References

1. Reed, L. S., Truong, T. K., Miller, R. L., and Benjauthrit, B., “Further Results on Fast
Transforms for Decoding Reed-Solomon Codes over GF(2™M) for m = 4, 5, 6, 8,” in
The Deep Space Network Progress Report 42-50, pp. 132-154, Jet Propulsion Labora-

tory, Pasadena, Calif., Jan. 15, 1979.

2. Berkekamp, E. R., Algebraic Coding Theory, New York, McGraw Hill, 1968.

3. Winograd, S., “On Computing the Discrete Fourier Transform,” Proc. Nat. Acad. Sci.

US4, Vol. 73, 1976, pp. 1005-1006.

4. Reed, I. S., and Truong, T. K., “Fast Mersene-Prime Transforms For Digital Filtering,”
Proc. IEE, Vol. 125, No. 5, May 1978, pp. 433-440.

70

